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Data analysis vs Privacy

Sensitive data set of n individuals: X1, . . . , Xn

Two conflicting interests:
1. We want to work with sensitive data sets

▶ to perform inference about a population.
▶ for optimization
▶ etc.

2. Individuals contributing to data sets with their sensitive
information want to preserve their privacy.

A significant amount of research is devoted to developing useful
methods for data analysis while protecting data privacy.



An outline

This talk: Introduce AdOBEst-LDP: A framework for efficient
parameter estimation under privacy constraints.
▶ Local differential privacy
▶ Randomized response mechanisms
▶ Posterior sampling
▶ Some theory



Local Privacy

Individual with sensitive information X ∈ X .

X is shared as Y through some mechanism.

Data privacy: main question
How should Y be shared so that
▶ privacy of each individual is protected, and
▶ the shared information Y is useful.



Some extreme solutions(?)

▶ Full transparency: Share Y = X .
▶ Very useful, but not private.

▶ Full secrecy: Toss a coin and share the outcome.
▶ Very private, but not useful.



Local differential privacy

Uses a randomized mechanism to generate Y from X .

Local Differentila Privacy (LDP)
A randomized mechanism M : X → Y satisfies ϵ-LDP if:

e−ϵ ≤ Pr(M(x) = y)
Pr(M(x ′) = y) ≤ eϵ, ∀x , x ′ ∈ X , y ∈ Y.

▶ Smaller ϵ implies stronger privacy guarantees.
▶ LDP operates on individual data points, unlike global DP,

which operates on datasets.



Categorical data

Sensitive individual data: X ∈ [K ] := {1, . . . , K}.

Randomized response Y ∈ [K ] using a mechanism M.

Requirement for ϵ-LDP:

e−ϵ ≤ Pr(M(x) = y)
Pr(M(x ′) = y) ≤ eϵ, ∀x , x ′, y ∈ [K ].



Standard randomized response (SRR) mechanism

SRR
Return Y = X with probability eϵ/(eϵ + K − 1), else return any
other element at random.

As a general mechanism on a finite set Ω:

SRR(X ; Ω, ϵ) =
{

X w.p. eϵ/(eϵ + |Ω| − 1)
∼ Uniform(Ω/{X}) else

.
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What to do with randomized responses?

▶ Sensitive data from n individuals from a population:

X1, . . . , Xn
iid∼ Categorical(θ1 . . . , θK ).

(Pr(Xi = k) = θk)

▶ Observations: Randomized responses are collected.

Y1 = M(X1), . . . , Yn = M(Xn)

▶ Goal: Estimate θ = (θ1, . . . , θK ) from Y1, . . . , Yn as
accurately as possible, while maintaining ϵ-DP.



Can we increase utility adaptively?

An ϵ-LDP mechanism is not unique; SRR is just one of them.

We have freedom over the mechanism to generate the response Yi
(under the ϵ-DP constraint).

Research question: Can we design a randomized mechanism
adaptable to current knowledge of θ?



Some ϵ-LDP mechanisms
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Some ϵ-LDP mechanisms
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Some ϵ-LDP mechanisms

0.62 0.38 0.00 0.00 0.00

0.38 0.62 0.00 0.00 0.00

0.56 0.44 0.00 0.00 0.00

0.56 0.44 0.00 0.00 0.00

0.56 0.44 0.00 0.00 0.00

1 2 3 4 5

Y

1

2

3

4

5

X

0

0.1

0.2

0.3

0.4

0.5

0.6



Main idea with an example

Suppose there are 20 political parties,

Only 4 parties (1, 2, 3, 4) are estimated to constitute %95 of the
votes.

A naive mechanism based on this estimate:
▶ If the user’s party Xi ∈ {1, . . . , 4}; apply SRR on {1, . . . , 4};
▶ Otherwise, return a random element from {5, 6, . . . , 20}.

With prob. 0.95, we will receive Y = X with probability
eϵ/(3 + eϵ) (in contrast to ϵϵ/(19 + eϵ)).



RRRR: Randomly restricted randomized response

Randomizes responses over a high-probability subset S (mostly!)

Algorithm 1: RRRR(X ; S, ϵ)
Input: Input X ∈ [K ], subset S ⊂ [K ], privacy parameters

ϵ1, ϵ2 > 0
Output: Randomized response Y ∈ [K ]

1 if X ∈ S then
2 Draw R ∼ Uniform(Sc).
3 Set Y = SRR(X ; S ∪ {R}, ϵ1).
4 else
5 Set R = SRR(X ; Sc , ϵ2).
6 Set Y = SRR(R; S ∪ {R}, ϵ1).
7 return Y



Transition matrix for RRRR

RRRR designed for θ = (0.80, 0.05, 0.05, 0.05, 0.05)
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LDP of RRRR

LDP of RRRR
RRRR is ϵ-LDP if ϵ1 ≤ ϵ and

ϵ2 =

min
{

ϵ, ln |Sc |−1
eϵ1−ϵ|Sc |−1

}
for ϵ − ϵ1 < ln |Sc | and |S| > 0

ϵ else
.

With |S| = 0 and ϵ2 = ϵ, RRRR reduces to SRR.



Illustration

Pθ(Y = X ) vs θi/θi+1 for all i = 1, . . . , K − 1 with K = 20. ϵ = 1
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Illustration

Pθ(Y = X ) vs θi/θi+1 for all i = 1, . . . , K − 1 with K = 20. ϵ = 5
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Subset selection in RRRR

U(θ, S, ϵ): utility of Y = RRRR(X ; S, ϵ) when X ∼ Category(θ).

S∗
θ = arg max

S⊂{0,...,K}
U(θ, S, ϵ).

There are 2K − 1 choices for S, one must confine the search space.



Subset selection in RRRR

RRRR becomes most relevant when the set S is a high-probability
set.

Consider the alternatives

Sθ,k := {σθ(1), σθ(2), . . . , σθ(k)}, k = 1, . . . , K .

where σθ is such that θσθ(1) ≥ . . . ≥ θσθ(K).

Then the subset selection problem can be formulated as finding

k∗ = arg max
k∈{0,...,K−1}

U(θ, Sk,θ, ϵ).



Utility Functions for Subset Selection

1. Fisher Information

U1(θ, S, ϵ) = −Tr
(
F −1(θ; S, ϵ)

)
,

where F is the Fisher Information Matrix.
2. Entropy of Randomized Response

U2(θ, S, ϵ) = −
∑
y∈Y

Pr(Y = y |θ) log Pr(Y = y |θ).

3. Total Variation Distance - 1

U3(θ, S, ϵ) = E[TV(Pr(X |Y , θ), Pr(X |θ))].



Utility Functions for Subset Selection

4. Total variation distance

U4(θ, S, ϵ) = −TV(Pr(Y |θ), Pr(X |θ))

where F is the Fisher Information Matrix.
5. Expected mean squared error

U5(θ, S, ϵ) = − arg min
êX

Eθ

[
∥eX − êX (Y )∥2

]
.

6. Probability of honest response

U6(θ, S, ϵ) = Pr(Y = X |S, θ).



Overall algorithm: AdOBEst-LDP

Algorithm 2: AdOBEst-LDP: Adaptive Online Bayesian Estima-
tion with LDP

1 Initialization: Start with an initial estimator Θ0 = θinit.
2 for t = 1, 2, . . . do
3 Step 1: Subset selection in RRRR: Based on Θt−1,

determine the subset St for RRRR.

4 Step 2: LDP response generation The sensitive
information Xt of individual t is shared as
Yt = RRRR(Xt ; St , ϵ).

5 Step 3: Draw a sample Θt from the posterior distribution
given Y1:t .
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Posterior Sampling: Stochastic Gradient Langevin
Dynamics

Goal: Sampling θ from the posterior:

π(θ|Y1:n, S1:n) ∝ η(θ)
n∏

t=1
Pr(Yt |θ, St).

Solution: Use SGLD for scalable, approximate sampling:
▶ Latent variables ϕi ∼ Gamma(ρi , 1) such that θi = ϕi/

∑
j ϕj .

▶ Perform updates with minibatches of size m:

ϕ(r) =

∣∣∣∣∣ϕ(r−1) + γn

2

(
∇ϕ ln p(ϕ(r−1)) + n

m
∑
i∈u

∇ϕ ln Pr(yi |ϕ(r−1))

)
+ γnWr

∣∣∣∣∣ .
where Wj ∼ N (0, I).

Reflection ensures positivity.



Theoretical results

▶ Given Y1:n and S1:n, the posterior distribution

Π(A|Y1:n, S1:n) :=
∫

A η(θ)
∏n

t=1 PSt ,ϵ(Yt |θ)dθ∫
∆ η(θ)

∏n
t=1 PSt ,ϵ(Yt |θ)dθ

.

▶ Q(·|Y1:n, S1:n, Θn−1): posterior sampling for Θn.
▶ S∗

θ : best subset at θ so that St = S∗
Θt−1

.

The joint law of S1:n, Y1:n:

Pθ∗(S1:n, Y1:n) :=
n∏

t=1
PSt ,ϵ(Yt |θ∗)[∫

∆
I(St = Sk∗,θt−1)Q(dθt−1|Y1:t−1, S1:t−1, θt−2)

]
,

Does Π(·|Y1:n, S1:n) converge to θ∗?



Convergence of the posterior distribution

Regularity assumption on the prior
There exist finite positive constants d > 0 and B > 0 such that
η(θ)/η(θ′) < B for all θ, θ′ ∈ ∆ whenever ∥θ′ − θ∗∥ < d .

Theorem
There exists a constant c > 0 such that, for any 0 < a < 1 and the
sequence of sets

Ωn = {θ ∈ ∆ : ∥θ − θ∗∥2 ≤ cn−a},

the sequence of probabilities

lim
n→∞

Π(Ωn|Y1:n, S1:n) Pθ∗→ 1,

regardless of the choice of Q.



Probability of best subset selection
Let S∗ := S∗

θ∗ be the best subset at θ∗. How often is it selected?

Assumptions

▶ The components of θ∗ are strictly ordered.
▶ Given any S ⊂ [K ] and ϵ > 0, U(θ, S, ϵ) is a continuous

function of θ with respect to the L2-norm.
▶ The best subset Sθ∗ is unique.

Theorem
If Θts are generated by exact sampling,

lim
n→∞

Pθ∗(Sn = S∗) → 1.

lim
n→∞

1
n

n∑
t=1

Eθ∗ [I(St = S∗)] = 1.



Numerical Experiments

AdOBEst-LDP was tested with varying parameters:

▶ Privacy levels ϵ ∈ {0.5, 1, 5}.
▶ Population distributions with uneven components (e.g.,

Dirichlet hyperparameter ρ ∈ {0.01, 0.1, 1}).

Performance metric:
1
2

K∑
k=1

|θk − θ̂|.
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Performance evaluation

Key Findings:
▶ Adaptive methods outperform non-adaptive counterparts,

especially
▶ at high privacy levels (ϵ < 1)
▶ non-even distribution (ρ ≪ 1).

▶ Utility functions yield robust performance across settings.

▶ (Semi-adaptive approaches are computationally cheaper but
require careful tuning.)



Key Takeaways

▶ AdOBEst-LDP: A new framework for Bayesian frequency
estimation via adaptive LDP.

▶ SGLD makes the approach scalable.

▶ Several utility functions provide flexibility.



Future Work

▶ Extending to non-categorical data distributions.

▶ Investigating alternative utility functions for subset selection.

▶ Enhancing scalability for very large population sizes.
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